Design and Fabrication of Capacitive Silicon Nanomechanical Resonators with Selective Vibration of a High-Order Mode
نویسندگان
چکیده
This paper reports the design and fabrication of capacitive silicon nanomechanical resonators with the selective vibration of a high-order mode. Fixed-fixed beam capacitive silicon resonators have been successfully produced by the use of electron beam lithography, photolithography, deep reactive ion etching, and anodic bonding methods. All resonators with different vibration modes are designed to have the same resonant frequency for performance comparison. Measurement results show that higher-order mode capacitive silicon resonators can achieve lower insertion loss compared to that of lower-order mode capacitive silicon resonators. The motional resistance of the fourth mode vibration resonator is improved by 83%, 90%, and 93% over the third, second, and first mode vibration resonators, respectively.
منابع مشابه
Design and Fabrication of a Narrow-bandwidth Micromechanical Ring Filter using a Novel Process in UV-LIGA Technology
This paper presents the design and a new low-cost process for fabrication of a second-order micromechanical filter using UV-LIGA technology. The micromechanical filter consists of two identical bulk-mode ring resonators, mechanically coupled by a flexural-mode beam. A new lumped modeling approach is presented for the bulk-mode ring resonators and filter. The validity of the analytical derivatio...
متن کاملHigh-Q Single Crystal Silicon HARPSS Capacitive Beam Resonators With Self-Aligned Sub-100-nm Transduction Gaps
This paper reports on the fabrication and characterization of high-quality factor (Q) single crystal silicon (SCS) in-plane capacitive beam resonators with sub-100 nm to submicron transduction gaps using the HARPSS process. The resonating element is made of single crystal silicon while the drive and sense electrodes are made of trench-refilled polysilicon, yielding an allsilicon capacitive micr...
متن کاملSpatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators.
High-order and multiple modes in high-frequency micro/nanomechanical resonators are attractive for empowering signal processing and sensing with multi-modalities, yet many challenges remain in identifying and manipulating these modes, and in developing constitutive materials and structures that efficiently support high-order modes. Here we demonstrate high-frequency multimode silicon carbide mi...
متن کاملNonlinear Modeling and Investigating the Nonlinear Effects on Frequency Response of Silicon Bulk-mode Ring Resonator
This paper presents a nonlinear analytical model for micromechanical silicon ring resonators with bulk-mode vibrations. A distributed element model has been developed to describe the dynamic behavior of the micromechanical ring resonator. This model shows the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes around the resonance frequency, material and ele...
متن کاملTOWARDS SINGLE SPIN SENSITIVITY Harish Bhaskaran , Doctor of Philosophy , 2006
Title of Dissertation: NANOMECHANICAL RESONATORS TOWARDS SINGLE SPIN SENSITIVITY Harish Bhaskaran, Doctor of Philosophy, 2006 Directed By: Professor Keith Schwab Department of Physics Ultrasensitive force detectors are required for progress towards single atom imaging using magnetic resonance force microscopy (MRFM). MRFM is a scanned probe imaging technique, with potential for atomic-scale, no...
متن کامل